Окно в лесу (Okno v lesu) by Александр Грин (Aleksandr Grin): Difficulty Assessment for Russian Learners

How difficult is Окно в лесу (Okno v lesu) for Russian learners? We have performed multiple tests on its full text (freely available here) of approximately 1,355, crunched all the numbers for you and present the results below.

Read the Full Text Now for Free!

Difficulty Assessment Summary

We have estimated Окно в лесу to have a difficulty score of 100. Here're its scores:

Measure Score
easy difficult (1 - 100)
Overall Difficulty 100% 100
Vocabulary Difficulty 100% 100
Grammatical Difficulty 100% 100

Vocabulary Difficulty: Breakdown

100%

Vocabulary difficulty: 100%

This score has been calculated based on frequency vocabulary (the top most frequently used words in Russian). It combines various measures of Окно в лесу's text analyzed in terms of frequency vocabulary: a plain vocabulary score, frequency-weighted vocabulary score, banded frequency vocabulary scores based on vocabulary of the text falling in the top 1,000 or 2,000 most frequent words, etc. Here's a further breakdown of how often the top most frequently used words in Russian appear in the full text of Окно в лесу:

Vocabulary difficulty breakdown for Окно в лесу: a test for Russian top frequency vocabulary

We have also calculated the following approximate data on the vocabulary in Окно в лесу:

Measure Score
Measure Score
Number of words 1,355
Number of unique words 1,024
Number of recognized words for names/places/other entities 37
Number of very rare non-entity words 55
Number of sentences 212
Average number of words/sentence 6

There is some research suggesting that that you need to know about 98% of a text's vocabulary in order to be able to infer the meaning of unknown words when reading. If true, this means that you would need to know around 1,003 words (where all the forms of the word are still counted as unique words) in Russian to be able to read Окно в лесу without a dictionary and fully understand it.

Grammatical Difficulty: Breakdown

100%

Grammatical difficulty: 100%

Here is the further grammatical comparison on this text. You can find an explanation of all these scores below.

Measure Score
Measure Score
Automated Readability Index 11
Coleman-Liau Index 16
Type/Token Ratio (TTR) 0.75572
Root type/Token Ratio (RTTR) 0.000557727
Corrected type/Token Ratio (CTTR) 0.000278863
MTLD Index 453
HDD Index 80
Yule's I Index 138
Lexical Diversity Index (MTLD + HD-D + Yule's I) 224

The type-token ratio (TTR) of Окно в лесу is 0.75572. The TTR is the most basic measure of lexical diversity. To calculate it, we divide the number of unique words by the number of words in the text. For example, for this text, the number of unique words is 1,024, while the number of words is 1,355, so the TTR is 1,024 / 1,355 = 0.75572. However, the TTR is a very crude measure, as it is extremely dependent on text length. The longer the text, the lower the TTR is usually going to be, since common words tend to often repeat. Especially since the number of words in this text is more than 1,000, the TTR is not likely to give an accurate measure.

The root type-token ratio (RTTR) and corrected type-token ratio (CTTR) are measures which were suggested by researchers to partially address the problem of TTR's variance on text length. In the RTTR, the number of unique words is divided by a square of the number of words (therefore, 1,024 / (1,355 * 1,355) = 0.000557727), while in CTTR, it is divided by a square of the number of words, multiplied twice 1,024 / 2 * (1,355 * 1,355) = 0.000278863). However, these measures are not as easily readable, and also there is a growing body of research asserting that CTTR and RTTR do not effectively address the problems of text length. Therefore, while we do provide the full text's TTR, RTTR and CTTR on this page, these fiqures do not form part of our final calculations.

The Automated Readability Index (ARI) is one readability measure that has been developed by researchers over the years. The formula for calculating the ARI is as follows:
Formula for calculating the Automated Readability Index

The ARI should compute a reading level approximately corresponding to the reader's grade level (assuming the reader undertakes formal education). Thus, for example, a value of 1 is kindergarten level, while a value of 12 or 13 is the last year of school, and 14 is a sophomore at college. The current ARI of this text is 11, making it understandable for 11-grade students at their expected level of education.

The Coleman Liau Index (CLI) is a similar index designed by Meri Coleman and T. L. Liau, and it is supposed to compute the grade level of the reader (thus, for example, sophomore level material would be around grade 14, or year 14 of formal education, while kindergarten / primary school level material would be close to grade 1 in the CLI). The CLI is usually slightly higher than the ARI. The CLI is computed with this formula:
Formula for calculating the Coleman-Liau Readability Index

It is notable that other indexes exist, such as the Flesch-Kincaid Reading Ease, Gunning-Fog Score, and others, but we have chosen not to include them, since, contrary to the ARI and CLI, such other indexes are based on a syllable count and therefore arguably only work for English and not Russian.

We compute a further compound lexical diversity index, which should range from 1 to a 100 (with the standard deviation being around 10, and its average value being around 50) - it is 224 in the present case. The compound lexical diversity index consists of the following indexes, averaged out (and also provided in the table above):

  • the Measure of Textual Lexical Diversity (MTLD) index - a measure which is based on computing the TTR for increasingly larger parts of the text until the TTR drops below a certain threshold point (around 0.7 in our case) - in which case, the TTR is reset, and the overall counter is increased; the counter is at the end divided by the number of words in text; as a result, the MTLD does not significantly vary by text length;
  • the Yule's I index (based on Yule's K characteristic inverted) - an index based on the work of the statistician G.U. Yule, who published his index of Frequency Vocabulary in his paper "The statistical study of literary vocabulary"; Yule's I takes into account the number of words in the text, and a compound summed measure of word frequency;
  • the Hypergeometric Distribution D (HD-D) index (based on vocd) - an index which assesses the contribution of each word to the diversity of the text; to calculate such contributions, a hypergeometric distribution is used to compute probabilities of each word appearing in word samples extracted from the text; then such distributions are divided by sample sizes and added up;

Our overall measure of grammatical diversity is based on a combination of the compound lexical diversity index (which includes the MTLD, Yule's I and HD-D indexes), the ARI and CLI, all normalized and given certain weight. The score should normally range from 1 to 100. In this case, the score is 100.

Other Information about Окно в лесу by Александр Грин

We provide you a sample of the text below, however, the full text of the Окно в лесу is also available free of charge on our website.

Sample of text:

Куличок двигался все тише и тише, он часто падал, трепыхаясь всем телом; вскакивал, пытаясь взлететь, и, совершенно обезумев, стукался о стекло лампы. Лес глухо гудел; сырой холод тьмы ронял капли дождя. Тоскливая, неизмеримая ярость подняла руку заблудившегося человека. Охваченный внезапным, жарким туманом, он вскинул ружье, прицелился, и оба ствола, грянув перекатистым эхом, разбили стекла. Крик раненого и грохот падающей скамьи был ему ответом. Лес ожил; тысячи голосов разнеслись в нем, и внутренность дома, сразу соединенная с охотником острым узором раздробленного стекла, стала действительностью. Стоило протянуть руку, чтобы коснуться стола и всклокоченной головы, рухнувшей на смятую скатерть. Мальчик трясся от ужаса и что-то кричал: он был вне себя. Охотник быстро уходил прочь, шатаясь, как пьяный. Стволы толкали его, ...

Top most frequently used words in Окно в лесу by Александр Грин*

Position Word Repetitions Part of all words
Position Word Repetitions Part of all words
1 он 17 1.25%
2 на 15 1.11%
3 его 14 1.03%
4 не 11 0.81%
5 от 11 0.81%
6 Охотник 8 0.59%
7 как 7 0.52%
8 по 6 0.44%
9 то 6 0.44%
10 был 6 0.44%
11 над 5 0.37%
12 за 5 0.37%
13 из 5 0.37%
14 дальше 4 0.3%
15 охотника 4 0.3%
16 чтобы 4 0.3%
17 все 4 0.3%
18 земли 4 0.3%
19 под 4 0.3%
20 ее 3 0.22%
21 лесу 3 0.22%
22 окна 3 0.22%
23 глаза 3 0.22%
24 ветра 3 0.22%
25 до 3 0.22%
26 темноте 3 0.22%
27 было 3 0.22%
28 ужаса 3 0.22%
29 шел 3 0.22%
30 человека 3 0.22%
31 руку 3 0.22%
32 что 3 0.22%
33 их 3 0.22%
34 лицо 3 0.22%
35 терялись 2 0.15%
36 руки 2 0.15%
37 ему 2 0.15%
38 губы 2 0.15%
39 тысячи 2 0.15%
40 тише 2 0.15%
41 тьме 2 0.15%
42 ловил 2 0.15%
43 леса 2 0.15%
44 человек 2 0.15%
45 голосов 2 0.15%
46 рукой 2 0.15%
47 уже 2 0.15%
48 ветер 2 0.15%
49 свет 2 0.15%
50 вихрем 2 0.15%
51 Лес 2 0.15%
52 мысли 2 0.15%
53 видимому 2 0.15%
54 ветви 2 0.15%
55 сырость 2 0.15%
56 вокруг 2 0.15%
57 Мартышки 2 0.15%
58 внутренность 2 0.15%
59 медленно 2 0.15%
60 ногами 2 0.15%
61 стола 2 0.15%
62 снова 2 0.15%
63 резкий 2 0.15%
64 стекла 2 0.15%
65 шаг 2 0.15%
66 вновь 2 0.15%
67 воздуха 2 0.15%
68 взгляд 2 0.15%
69 Мальчик 2 0.15%
70 нем 2 0.15%
71 судорожно 2 0.15%
72 шагами 2 0.15%
73 идти 2 0.15%
74 подобно 2 0.15%
75 11 2 0.15%
76 уголек 2 0.15%
77 они 2 0.15%
78 ночи 2 0.15%
79 предметы 2 0.15%
80 головой 2 0.15%
81 навстречу 2 0.15%
82 крик 2 0.15%
83 прочь 2 0.15%
84 лицом 2 0.15%
85 землей 2 0.15%
86 голод 2 0.15%
87 сразу 2 0.15%
88 воображении 2 0.15%
89 стены 2 0.15%
90 быстро 2 0.15%
91 беззвучно 2 0.15%
92 сердце 2 0.15%
93 толкали 2 0.15%
94 пошел 2 0.15%
95 человеку 2 0.15%
96 чем 2 0.15%
97 печи 2 0.15%
98 Лесник 2 0.15%
99 почти 2 0.15%
100 для 2 0.15%
101 охотником 2 0.15%
102 ноги 2 0.15%
103 столу 2 0.15%
104 маленький 2 0.15%
105 темноты 2 0.15%
106 мужик 2 0.15%
107 расстегнутым 1 0.07%
108 потным 1 0.07%
109 облаков 1 0.07%
110 есть 1 0.07%
111 вышедшим 1 0.07%
112 трое 1 0.07%
113 глиняная 1 0.07%
114 вороны 1 0.07%
115 бешено 1 0.07%
116 мускулы 1 0.07%
117 друг 1 0.07%
118 нежное 1 0.07%
119 превращало 1 0.07%
120 казалась 1 0.07%
121 нервно 1 0.07%
122 страх 1 0.07%
123 желтые 1 0.07%
124 тянулась 1 0.07%
125 иглой 1 0.07%
126 надежде 1 0.07%
127 птице 1 0.07%
128 мирной 1 0.07%
129 наполнявшего 1 0.07%
130 действительностью 1 0.07%
131 хаосе 1 0.07%
132 отчаяние 1 0.07%
133 были 1 0.07%
134 дикий 1 0.07%
135 Соблазнительные 1 0.07%
136 фоне 1 0.07%
137 сжигаемый 1 0.07%
138 Ночь 1 0.07%
139 границы 1 0.07%
140 чистой 1 0.07%
141 черные 1 0.07%
142 погас 1 0.07%
143 жарким 1 0.07%
144 болезненным 1 0.07%
145 маленьких 1 0.07%
146 безумно 1 0.07%
147 грязной 1 0.07%
148 облака 1 0.07%
149 сплющиваясь 1 0.07%
150 стекол 1 0.07%
151 почерневшие 1 0.07%
152 воротом 1 0.07%
153 подстриженными 1 0.07%
154 выли 1 0.07%
155 воплем 1 0.07%
156 методически 1 0.07%
157 внезапным 1 0.07%
158 трясся 1 0.07%
159 горела 1 0.07%
160 туманом 1 0.07%
161 Обитатели 1 0.07%
162 Повсюду 1 0.07%
163 ориентироваться 1 0.07%
164 находка 1 0.07%
165 поражаемой 1 0.07%
166 стене 1 0.07%
167 крикнуть 1 0.07%
168 игла 1 0.07%
169 удерживая 1 0.07%
170 ронял 1 0.07%
171 неба 1 0.07%
172 вперед 1 0.07%
173 четыреугольнике 1 0.07%
174 темной 1 0.07%
175 пронзительным 1 0.07%
176 улыбался 1 0.07%
177 рубахи 1 0.07%
178 веселой 1 0.07%
179 предчувствуя 1 0.07%
180 Медленное 1 0.07%
181 обложенный 1 0.07%
182 полной 1 0.07%
183 грохот 1 0.07%
184 взятого 1 0.07%
185 свой 1 0.07%

This list excludes punctuation or single-letter words, also some different-case repeats of the same words.

If you think the text would be accessible to you, you can read it on our site (click on the cover to access):

Cover of Окно в лесу by Александр Грин

Other resources and languages

If you like this analysis, you should have a look at out our lists of Russian short stories and Russian books.

If you like literature as a means to learn languages - please take a look at our project Interlinear Books. We even have a Russian Interlinear book available for purchase.